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Abstract. In this paper we introduce a reaction model on a lattice which leads to oscillations.
The model consists of two monomolecular and one bimolecular reaction step and is related to
the Lotka model. Despite the simple evolution rules, the model shows a complex behaviour
(i.e. the appearance of oscillations). This offers us the opportunity to test different types of
stochastic approximations and compare them with the results of a Monte Carlo simulation. The
simulation is performed on a large lattice(L = 1024) in order to take long-range correlations
into account. Comparing the results of this simulation with the stochastic approaches shows
that only advanced numerical approximations are able to predict the system behaviour correctly.
Simple approximations which do not account for long-range correlations (such as mean-field
approximations) fail in the prediction of the system behaviour. The correlation analysis (an
advanced stochastic description) is in overall good agreement with the results of the simulation
and therefore is an alternative to computer simulation. Moreover, it is not restricted to using a
finite lattice and does not need a large amount of computing time.

1. Introduction

Systems in which particles are created and annihilated are very interesting in many different
areas of research. They play important roles in the description and understanding of energy
transfer [1], Frenkel defect recombination and accumulation in solids [2, 3] and chemical
reactions which may take place in a volume [4–7] or on a surface [8–10].

In this paper we want to study a stochastic model of a surface reaction system which
can serve as a simplified model for a heterogeneously catalyzed reaction [11, 12, 8]. Such
surface reaction models are characterized by the following properties.

(1) They are microscopic lattice models in which all interactions are defined by the state
of the cell and by the states of its neighbours.

(2) These models may show a very complex behaviour (i.e. kinetic phase transitions or
oscillations) despite their simple evolution rules.

(3) A theoretical description turns out to be very complicated. Due to segregation
effects an approach which takes only global aspects (such as the global particle densities)
into account fails in the prediction of the behaviour of such systems. Even simulations are
problematic because the correlation length can be very large (larger than the lattice size
used) or can diverge (see, for example [13]).

(4) An even more interesting behaviour may be observed if the lattice is disordered
[12]. One observes a behaviour which is the result of chemical steps of the reaction system
itself and of the lattice structure (percolation problem).
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It is well known that the exact theoretical description of a system which shows kinetic
phase transitions is nearly impossible [14], therefore approximations must be used. Standard
approaches are the mean-field approximation, the cluster approximation and the correlation
analysis.

The correlation analysis describes the reaction system on the lattice by stochastic
differential equations. They are equations of motion fork-point probabilities. To this
end one assumes that the system is a Markov process. For each cell of the lattice a variable
defines the state of the cell (and in case of a disordered lattice, the state of the lattice [12]).
The processes are described by matrices which contain the transition probabilities. The
time evolution of thek-point probabilities leads to a hierarchy of master equations. This
hierarchy is terminated at the 3-point level by using a superposition approximation [12, 13].
The direct use of such an approximation would be in conflict with the sum rules that the
system has to fulfil. Therefore a function which corrects this should be introduced. This
procedure leads to a set of nonlinear integrodifferential equations for the global densities
and the pair correlation functions which are solved numerically. For details see [12, 13].

The cluster approximation [15] follows from the correlation analysis by neglecting the
long-range correlations. This leads to a set of nonlinear equations for the global densities.
Short-range correlations are taken into account.

The (site) mean-field approximation neglects all spatial correlations. This leads to simple
expressions which may be calculated analytically in many cases.

For all these approximations the question of their relevance and applicability and in this
case also of their accuracy is very important. In order to answer this question, one uses a
test model. In the theory of equilibrium phase transitions the most important system is the
Ising model. It would be very important to have such a reference system in the theory of
stochastic surface reactions as well, but it turns out that such a system is not easy to find.

One possible model is the catalytic oxidation of CO [8]. This system shows two kinetic
phase transitions under variation of the mole fraction of CO in the gas phase,yCO. One
phase transition of second order appears atyCO = y1 = 0.395± 0.005. Another phase
transition of first order appears aty2 > y1. The first order phase transition can easily be
described by the mean-field approximation. But the phase transition of second order aty1 is
very difficult to describe correctly by a theoretical approach because long-range correlations
are very important. Here the mean-field approximation leads toy1 = 0 [10] which means
that the phase transition does not exist at all. The cluster approximation gives the much
better result ofy1 = 0.258 [15]. With the help of the correlation analysis one obtains perfect
agreement with the simulation and obtainsy1 = 0.395 [13].

The cluster approximation has the advantage that it is much easier to formulate for a
given system than the correlation analysis which is very complex. Moreover, the cluster
approximation offers the possibility of a purely analytical solution. Therefore, it would be
very important to know whether this approximation is useful for the description of surface
reaction systems. The above-mentioned result ofy1 for the CO oxidation seems to indicate
this. But it should be noticed that the coordination numberz of the lattice is the only variable
which describes the spatial structure of the system. It is well known from the theory of
phase transitions that lattice models with the samez but different spatial dimensions lead
to qualitative different results. This means that in principle the cluster approximation could
lead to a wrong or incomplete description of the system. For example, it is not clear that
this approximation allows a good description of the CO oxidation on a percolation cluster as
the lattice. Therefore we want to introduce a test system which depends critically on spatial
properties. These properties, which arise in the different approximation schemes (discussed
above), will be compared with each other and with a simulation. The main question is:
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Which approximation is required to obtain the spatial properties correctly?
The paper is organized as follows. First, in section 2, we introduce a lattice model which

is well suited to test the different approximations. In section 3 we introduce the definitions
of the formalism used and derive the evolution equations for the global densities. Sections 4
and 5 give the results obtained from the mean-field and cluster approximation, respectively.
The main ideas of how to derive the correlation analysis approximation are given in section
6. Section 7 shows the result of the simulation and compares them with the approximations.
A discussion and conclusion follow in sections 8 and 9 respectively.

2. The test model

As a test model we use a model of Lotka [16] which was introduced as a mean-field model.
In this paper we will use a lattice representation of this model. The reaction scheme for the
Lotka model reads as follows

E −→ A A+ B −→ 2B B −→ F. (1)

HereE is an infinite reservoir of matter. A linear transformation ofE toA occurs, followed
by an autocatalytic transformation ofA into B and its decay. A biological interpretation
might be the reproduction of animalsB by division in a medium with a spontaneous
production of foodA for them. Other interpretations in the field of surface reactions
(where autocatalytic reaction steps often occur) are possible. To this end the model must
be extended.

For the lattice representation of the model of Lotka we have three possible statesσ for
each celll: σl ∈ {0, A, B}, where 0 means the cell is empty. We define the dynamics of
the system by two monomolecular steps

0
pA−→ A B

kB−→ 0 (2)

which represents the creation ofA with the ratepA and the annihilation ofB with the rate
kB , respectively, and a bimolecular step

BA
k−→ BB (3)

which represents the transformation for nearest neighbours with the ratek = R/z. It is
possible to introduce a time variable so thatpA + kB = 1, pA = ζ , kB = 1 − ζ and
0< ζ < 1. IntroducingR→∞ leads to a very simple model which depends only onζ .

The main feature of the model is the possibility of transition chains: if anA particle
which is part of anA cluster comes in contact with aB particle, allA particles in this
cluster are changed intoB particles (contagion).

3. Definitions

We introduce the necessary definitions which are used in the following. We denote by
ρ(k)(k = 1, . . . ,∞) the k-point densities.l, m andn are vectors which point to a cell on
the lattice,σl ∈ {A,B,0} is the lattice variable which describes the state of the celll. For
k = 1, ρ(1) does not depend on the chosen lattice sitel and we writeρ(1)(σl) = Cσl as
an abbreviation. For the densitiesC the sum ruleCA + CB + C0 = 1 holds. Fork = 2,
ρ(2)(σl, σm) depends only on|l−m| because of the translation invariance of the lattice. As
a sum rule we obtain∑

σm

ρ(2)(σlσm) = ρ(1)(σl). (4)
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The asymptotic condition

lim
|l−m|→∞

ρ(2)(σl, σm) = ρ(1)(σl)ρ(1)(σm) (5)

holds. We define the correlation functionsFλµ(l −m), whereλ = σl andµ = σm by the
equation

ρ(2)(σlσm) = CλCµFλµ(l−m). (6)

In the models discussedF depends only on the distancer = l−m. As an asymptotic case
|r| → ∞ the correlations between the particles vanish:

lim
|r|→∞

Fλµ(r) = 1. (7)

Let us now write the temporal evolution of theA- andB-density:

d

dt
CA = pA(1− CA − CB)−KCACB (8)

and
d

dt
CB = KCACB − kBCB (9)

whereK is the reaction constant and is defined byK = RFAB(1).
In addition to the original model of Lotka [16] in which only two equations for the

global densities exist, the lattice representation possess two new important properties.
(1) There exists a saturation for the particles which means that all densities are restricted

by
∑

µ Cµ = 1. The original Lotka model [16] uses a continuous representation (without a
limiting C0 = (1− CA − CB) factor) and the densities are not restricted. As a result, the
number of stationary solutions for our system increases from one (in the Lotka model) to
two in our lattice representation.

(2) In the original Lotka model [16]K is truly a constant and therefore the system
depends only on two parameters and can be solved analytically. In the lattice representation
K depends on the correlation functions which means thatK depends on the spatial structure
of the system. To take this into account we must describeK in the form of an infinite chain
of correlation functions (see for example [12, 13, 20]) in the cluster approximation and in
the correlation analysis approximation.

4. The mean-field approximation

In this section we solve equations (8) and (9) in the mean-field approximation which means
thatK is a constant because allFλµ(1) are unity. ForpA = ζ andkB = 1− ζ one obtains
two solutions.

(1) The trivial solution ofA-poisoning:

CA(∞) = 1 CB(∞) = 0. (10)

This solution is a stable knot forK < 1− ζ .
(2) The non-trivial solution

CA(∞) = 1− ζ
K

CB(∞) = ζ
(

1− 1− ζ
K

)
(11)

which is physically meaningful (CB(∞) > 0) only for K > 1 − ζ . In this region the
solution is stable (knot or vortex) and corresponds to the solution of the model of Lotka
[16] without saturation.
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From the synergetic point of view both solutions are not interesting because oscillations
cannot occur [17, 18]. This is explained by a theorem of Hanusse [18] which states
that the auto-oscillation regime cannot arise in a system with two intermediate products
(A and B) if only the mono- and bimolecular reaction steps occur. In the mean-field
approximation of this model only mono- and bimolecular reaction steps arise which do
not lead to the cubic nonlinearities in the global densities which are necessary for the
appearance of oscillations. It should be noted that this theorem is only valid for the mean-
field approximation in which all spatial correlations are neglected (Fλµ(r) = 1 for all λ,µ).
This leads toK = R = constant. In the case ofR = ∞ this would lead to the non-trivial
solution

CA(∞) = 0 CB = ζ. (12)

This solution is physically not meaningful: letζ � 1. This would represent a nearly
empty lattice but despite this fact,A particles cannot be created.

A better mean-field approximation of this model would take into account the fact that
for R → ∞ the functionFAB(1) → 0 (no AB pairs as nearest neighbours) but that the
productK = RFAB(1) remains finite. This ansatz is not solvable.

Therefore the question to be answered remains: How large is the reaction constantK

and which solutions are stable?

5. The cluster approximation

In this approximation the independent pair probabilitiesρ(2)(σlσm) for the nearest neighbours
are used. For details see [15]. In order to obtain the reaction constantK we write the
equation forρAB (from which we can obtainK by ρAB = CACBFAB(1) andK = RFAB(1)).
dρAB

dt
= dρ(2)(AlBm)

dt
= pAρ(2)(0lBl)− kBρ(2)(AlBl)− R

z
ρ(2)(AlBm)

−R
z

∑
n

αl,nρ
(3)(AlBmBn)+ R

z

∑
n

αm,nρ
(3)(AlAmBn). (13)

The first term describes the creation of anAB pair by creation of anA in a vacant cell which
has a neighbour cell occupied by aB(0→ A). The second term shows the annihilation of
anAB pair by annihilation of aB(B → 0). The third term describes the annihilation of
anAB pair by a direct transformation of anA to aB(A→ B). The fourth and fifth terms
show the annihilation of anAB pair by indirect transformations by a catalytic reaction over
neighbours.

Within the cluster approximation [15] the three point densitiesρ(3) are expressed by
one and two point densities. Furthermore, the original sum rules should still be valid. We
use the following ansatz:

ρ(3)(σlσmσn)⇒
{
ρµλρλν/Cλ = CλCµCνFλµ(1)Fλν(1) for n 6= m
0 for n = m.

(14)

In this approximation the pointl is the central point andCλ represents the state of this
point. The other points are the neighbours of pointl. This approximation fulfils all required
sum rules, i.e.

∑
σn
ρ(3)(σlσmσn) = ρ(2)(σlσm). One notes that forR → ∞ the product

ρ̂AB = RρAB remains finite. We can rewrite the last two equations in the form

1

R

dρ̂AB
dt
= pAρ0B − ρ̂AB

(
kB

R
+ 1

z
+ z − 1

zR

ρ̂AB

CA
− z − 1

z

ρAA

CA

)
. (15)



4176 J Mai et al

The direct use of approximation equation (14) does not take the virtual configurations
into account (an A particle between B particles). For the termρ̂ABB =
R
z

∑
n αl,nρ

(3)(AlBmBn) we would obtain in the direct approximation̂ρABB = z−1
zR
ρ̂AB

ρ̂AB
CA

.
In the limit R → ∞ this term would be zero. We introduced a method to handle this
problem [13]. With this ansatz we obtain for the three particle densityρ̂ABB :

ρ̂ABB = 1

z
pAC0(zβ − 1+ (1− β)z) β = ρ0B/C0. (16)

For R→∞ we obtain the algebraic equation

ρ̂AB = pAC0[1− (1− β)z]
1− (z − 1)ρAA/CA

. (17)

Without taking the three point density (equation (16)) into account we would obtain
in the numerator of the last equation only the first term of a series ofβ expressions:
pAC0zβ = zpAρ0B . This result would be valid only for smallCB . From this we can derive
the reaction constant which can be written in the formK = ρ̂AB/CACB . The reaction
constant in this approximation is not a constant but depends on the global densities and the
pair probabilities.

For the global densities we obtain

dCA
dt
= pAC0− ρ̂AB and

dCB
dt
= ρ̂AB − kBCB. (18)

With the sum rulesρAA+ρAB +ρA0 = CA andρBB +ρBA+ρB0 = CB (with ρAB = 0)
we only need the evolution equations forρAA andρBB :

dρAA
dt
= dρ(2)(AlAm)

dt
= pA(ρ(2)(0lAm)+ ρ(2)(Al0m))− R

z

∑
n

αl,nρ
(3)(AlAmBn)

−R
z

∑
n

αm,nρ
(3)(AlAmBn) (19)

dρBB
dt
= dρ(2)(BlBm)

dt
= −2kBρ

(2)(BlBm)+ R
z
(ρ(2)(AlBm)+ ρ(2)(BlAm))

+R
z

∑
n

αl,nρ
(3)(AlBmBn)+ R

z

∑
n

αm,nρ
(3)(BlAmBn). (20)

With the ansatz (14) and in the limitR→∞ we obtain:

dρAA
dt
= 2

(
pAρ0A − z − 1

z
ρ̂AB

ρAA

CA

)
(21)

dρBB
dt
= 2

(
1

z
ρ̂AB + ρ̂ABB − kBρBB

)
. (22)

An analytical solution of the system (16)–(18), (21) and (22) is also obtainable. We
obtain one stable stationary solution which can be expressed by a parameter. Letβ be a
solution of the nonlinear equation

β = ζ(1− (1− β)z/z) (23)

with β/ζ 6 1. It follows for the stationary densities

CA(∞) = a/x CB(∞) = b/x x = a + b + 1 (24)

with

a = 1− β/ζ
[1− z

z−1(1− β/ζ )]
b = ζ

1− ζ . (25)
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Let us now compare this result with the result of the mean-field approximation. We notice
that for ζ → 1 both results are nearly identical which means that in this region the mean-
field approximation is sufficient. But forζ → 0 we observe large differences.CB(∞)
in the cluster approximation is always smaller than the value obtained by the mean-field
approximation.CA(∞) is larger than zero (result of the mean-field ansatz).

One sees from the last three equations that the solution depends on the number of nearest
neighboursz which means that we have at least partly taken the properties of the lattice
into account. Also, this solution does not lead to oscillations.

6. The correlation analysis

The correlation analysis is presented in [20] in detail. In principle, very similar arguments
as in the cluster approximation are used. The three point densities are expressed by two and
one point densities. But in the correlation analysis these densities depend on the correlation
functionsFλµ(r) for r > 1. Here we use the Kirkwood approximation [21]:

ρ(3)(σlσmσn)⇒ CλCµCνFλµ(l −m)Fµν(m− n)Fνλ(n− l). (26)

The resulting equations are solved numerically on a lattice. Because the details of this
approximation are very lengthy we do not want to repeat the steps here. We only present
the results in the following.

7. Comparison of the results of the approximations with the simulation

In the following we will compare the different approximations with the results of the
corresponding simulation.

First we want to study the stationary states of the model. This is presented in figure 1 in
which the global densities are shown as a function ofζ . The small dots represent the results
of the mean-field approximation, the broken curves represent the cluster approximation and
the large dots represent the results of the simulation. Let us first study the behaviour of the

Figure 1. The stationary states of the global densitiesCA(∞) andCB(∞) in the Lotka model.
The small dots represent the mean-field approximation (equation (12)) withK →∞, CA = 0 and
CB = ζ . The broken curves represent the results of the cluster approximation (equations (23)–
(25)). The large dots represent the result of the simulation taking place on a lattice of size
L = 1024. The mean deviationsδC are also shown.



4178 J Mai et al

simulation: by increasingζ , CB increases nearly linearly andCA decreases. This behaviour
is understandable from the evolution rules. By increasingζ , kB decreases which leads to
moreB particles on the lattice. In this caseA clusters can easily be transformed intoB
clusters, decreasingCA and increasingCB .

Also the mean squared deviations of the concentrationsδC2 = 〈C2〉 − 〈C〉2 are shown
for the simulation in this figure. Forζ > 0.1 the differencesδC/C are very small which
means that the fluctuations produced by the system are small. Forζ < 0.1 the difference
increases strongly because of the appearance of oscillations (see below).

Let us now compare this result of the simulation with the stochastic approximations.
One sees that the results of the mean-field approximation (dots) are not in agreement with the
simulation:CA is zero in the mean-field ansatz but the value forCA in the simulation is much
larger. The differences inCB are smaller but still noticeable. The cluster approximation
(broken curves) is in much better agreement with the simulation. Forζ > 0.3 the differences
are small but become larger for smaller values ofζ . Both approximations do not show
oscillations (as discussed earlier) which is in contrast to the simulation. The result of the
correlation analysis is forζ > ζ0 = 0.120 nearly identical to the one of the cluster analysis
(differences are in the third digit) therefore it is not shown in the figure. Forζ < ζ0 the
correlation analysis leads to a qualitative change of the system behaviour. We obtain an
instability in the correlation functions which corresponds to a spherical wave. As a result
we obtain oscillations. The long-range correlations which are taken into account in the
correlation analysis create new degrees of freedom in the system and lead to the appearance
of oscillations. This aspect cannot be described by the simpler approximations (mean-field
and cluster approximation).

In order to study the oscillations (obtained from the correlation analysis) we present the
values ofCB as a function of time in figure 2. The points were collected for1t = 0.25
for different values ofζ . One sees that the oscillations correspond to a limit cycle and we
obtain a system driven by a pure periodic motion. For this type of motion we expect a series
of lines (atω = ω0, 2ω0, . . .) in the frequency spectrum. We in fact observe this behaviour
which is shown in figure 3. The peaks have a certain width which may be explained by
the occurrence of rounding errors in the numerical iteration. This additional noise cannot
be avoided. This leads to the Lorentz-like curves shown in the figure.

The temporal behaviour of the simulation is of particular relevance and is thus studied in
detail. In figure 4 the global densityCB is shown as a function of time for different values
of ζ . For ζ = 0.07 we observe the appearance of oscillations. They are not completely
periodical due to the noise in the system. For smaller values ofζ we were not able to
study the system behaviour properly due to the very large oscillations which appear. These
oscillations can lead to the annihilation of allB particles and this therefore represents an
instability of the system (especially for small lattice sizes). In figure 5 we present the
frequency spectrum of the system. Forζ = 0.13, 0.11 we obtain some kind of white noise
in which all frequencies are present. Additionally, we observe a Lorentz-like curve. How
can one explain this behaviour? For a lattice withL2 cells we haveL2 stochastic variables
(occupation numbers). From these we can define some macroscopic variables (i.e. the global
densitiesCA andCB). All L2− 2 remaining variables are hidden in a macroscopic theory.
Equations (8) and (9) describe the macroscopic motion of the system. The reaction constant
K is a function of these hidden variables. We can express this in the formK = K0 + δK
whereK0 is a constant andδK = δK(t) is an arbitrary function of time with a mean value
of zero. The behaviour of the system is strongly influenced by the value ofK0. As we
have discussed in equation (11) the stationary solution of the system is a stable knot or a
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Figure 2. CB is shown as a function of time for different values ofζ for the correlation analysis
approximation. The points are sampled for every1t = 0.25.

stable vortex. We obtain a vortex forK− < K < K+ with

K∓ = 2

ζ

(
1∓

√
1− ζ

)
− ζ. (27)

We do not know exactly which value ofK represents the simulation. From the cluster
approximation we can numerically calculateK. This calculation indicates thatK in fact
lies between the border values ofK∓. This means that the system (equations (8) and (9))
can be represented by a damped oscillator. This oscillator is influenced by the external
noiseδK which leads to the fluctuations in the global densities. Nevertheless, the system
does not forget the properties of the basic system in whichK = constant. This seems to us
to be the explanation for the Lorentz curve in the frequency spectrum.

For ζ = 0.09, 0.07 the main frequencyω0 can easily be seen. The noise is nearly
the same as for the larger values ofζ . Here we observe a new force (with the frequency
ω0) which defines the motion of the global densities. The reaction constant is a periodical
function of time.

Let us study now another aspect of our lattice version of the Lotka model. In the case
where allB particles are annihilated by chance, the lattice will be completely covered by
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Figure 3. The frequency spectrum for figure 2. The number of sampled points is 211 taken for
t < 512 with1t = 0.25.

A particles and the reaction comes to a stop. This is a specific instability of this system
which has a larger probability to appear if the number ofB particles is small. It means that
the instability of the system is directly connected to the lattice size used in the simulation.
Therefore it is very important to use a lattice which is large enough to avoid this instability.
Let CB(min) be the minimum density ofB particles for a simulation on a lattice withL2

cells. The conditionCB(min)L2 = NB(min) � 1 should be fulfilled for the simulations.
The minimum number ofB particles can be determined from the simulation. In figure 6 the
global densityCB is shown as a function of time forζ = 0.08 and for lattices of different
lengthL. The frequency spectrum for the system is shown in figure 7. For a very small
lattice withL = 128 we obtain large fluctuations in the densities because of the large noise
in the system. The value ofCB(min) is of the order of 10−3 andNB(min) ≈ 10. With these
small numbers the system can run easily into an instability and we obtain large fluctuations.
With increasing lattice size the fluctuations become smaller. ForL = 1024,NB(min) is of
the order of 104. These fluctuations are much smaller compared with the case of smaller
lattices. At this lattice size we easily see the appearance of periodic oscillations. The noise
cannot be completely avoided (even forL → ∞) because it is an inherent quality of a
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Figure 4. The global densityCB is shown as a function of time as the result of the
simulation performed on a lattice withL = 1024. The other parameters are1t = 0.25,
ζ = 0.13, 0.11, 0.09, 0.07.

system with many degrees of freedom. In the framework of the correlation analysis we
study a thermodynamic limit withL → ∞. HereCB can reach very small values, but
NB = CBL2 → ∞. This means that the instability (discussed above) cannot occur in the
stochastic approximation.

The phase diagram for the simulation is shown in figure 8 forζ = 0.07 and in figure 9
for ζ = 0.08. One clearly sees the limit cycle which the system approaches forζ = 0.07.
For larger values ofζ the motion of the system is more chaotic which is a result of the
increased noise.
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Figure 5. The frequency spectrum for figure 4. The number of sampled points is 211 taken for
t < 512 with1t = 0.25.

8. Discussion

In this paper we have introduced a test model which is based on a model of Lotka [16]. This
model is easy enough to handle with stochastic approximations of different complexities
we introduced earlier [19, 12, 13]. On the other hand, it shows a complex behaviour
(oscillations) which depends strongly on the spatial particle configuration. Therefore it
is an ideal test model for our purpose.

For small values of a system parameterζ , which is related to the creation rate of
particles, we observe the appearance of oscillations in the simulation (on a large lattice). In
this region the system depends critically on the spatial particle distribution. By using smaller
lattices we do not see oscillations, only noise. Only the use of a lattice withL = 1024
reduces the noise to a level where the oscillations can be seen clearly. Therefore, it turns
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Figure 6. The global densityCB as a result of the simulation forζ = 0.08 on different lattices
L2 with L = 128, 256, 512, 1024.

out that a simulation of this system is not easy to achieve and requires large amount of
computing time due to the minimum size of the lattice.

Let us now turn to the approximations. First they have the advantage that they are
not restricted to a finite lattice. This rules out finite size effects. The calculations are
straightforward and do not require a large amount of computing time.

The simplest approximation, the mean-field approximation, turns out to be unable to
describe the system behaviour appropriately.CA is always zero and the values ofCB are
too large for all values ofζ .

The next step to a better description is the cluster approximation (only nearest-neighbour
correlations). The global densities (see figure 1) obtained from this approximation are in
much better agreement with the results of the simulation especially for large values ofζ .
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Figure 7. The frequency spectrum for figure 6. The number of sampled points is 211 taken for
t < 512 with1t = 0.25.

For small values ofζ the system behaviour is dominated by oscillations. In this region the
approximation must fail because it cannot account for the appearance of oscillations.

The correlation analysis leads to a qualitative change of the system behaviour. For
ζ < ζ0 this approximation is able to describe the appearance of oscillations correctly. For
larger values ofζ this approximation is nearly identical to the cluster approximation. This
means that a critical phenomenon-like oscillations can only be described by an advanced
approximation such as the correlation analysis.

9. Conclusions

As a conclusion of this study we can state the following facts. The lattice representation
of the Lotka model is well suited to act as a test model for stochastic approximations
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Figure 8. The phase diagram for the simulation on a lattice withL = 1024 for ζ = 0.07 and
1t = 0.25.

Figure 9. The phase diagram for the simulation on a lattice withL = 1024 for ζ = 0.08 and
1t = 0.25.

because it depends strongly on the particle distribution and is complex enough to show a
complicated temporal behaviour such as oscillations. On the other hand, it is easy enough to
be handled by a theoretical stochastic approach. In order to test the approximation we used
a simulation to obtain the behaviour of this model. The simulations turned out to be very
complicated due to the requirement of using large lattices in order to avoid instabilities of
the system. Let us turn now to the approximations. The simplest approximation (the mean-
field approximation) fails in the prediction of the system behaviour. The cluster analysis
is able to reproduce global properties (such as the global densities) to a certain degree.
Nevertheless, it cannot account for the appearance of oscillations. This can only be done
by the correlation analysis. This means that only this approximation is able to qualitatively
predict the system behaviour completely. This shows that simple approximations (such
as the mean-field approximation) are not useful to describe the complex reaction system.
Using such methods leads to a qualitative false prediction of the system behaviour.

In a future paper we want to study this approximation in a more complex system which
uses a disordered lattice.
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